# Tandem Rh(I)-Catalyzed [(5+2)+1] Cycloaddition/Aldol Reaction for the Construction of Linear Triquinane Skeleton: Total Syntheses of (+)-Hirsutene and (+)-1Desoxyhypnophilin

JACS ASAP Article: Published 3/12/08

Lei Jiao, Changxia Yuan and Zhi-Xiang Yu

Current Literature: 3/29/08

David Arnold

#### Linear Triquinanes: Target Natural Products



(<u>+</u>)-1-desoxyhypnophilin



Lentinus crinitus



(<u>+</u>)-hirsutene



Coriolus consors

- Polyquinane natural products were first isolated in 1966.
- Since then over 80 linear triquinane natural products have been isolated from plants, microbes and marine organisms.
- Biological activities of select linear triquinanes include antibiotic and antitumor activity.

Tetrahedron Letters 2000, 41, 8985; Angew. Chem. Int. Ed. 2003, 42, 5855.

## Background: Theoretically Suggested Mechanism for [Rh(CO)<sub>2</sub>Cl]<sub>2</sub> Catalyzed Intermolecular (5+2) Reactions between Vinylcyclopropanes and Alkynes

$$|Rh(CO)_2CI|_2$$

$$|Rh($$

J. Am. Chem. Soc. 2004, 126, 9154-9155.

## Could the Intermediate Along the Route to a [5+2] Cycloaddition be intercepted by CO to give a [5+2+1] Cycloadduct

J. Am. Chem. Soc. 2002, 124, 2876-2877.

#### Yes... With a Surprising Result!

Transannular Aldol condensation gives the coresponding diquinane products

| 1     -COCH <sub>3</sub> -Et     2     20     15       2     -COCH <sub>3</sub> -TMS     1     42     16       3     -COCH <sub>3</sub> -Ph     1     26     17       4     -CONH <sub>2</sub> -Ph     1     40     18       5     -CHO     -Ph     2     26     19       6     -CO <sub>2</sub> Et     -Ph     1     24     20       7     -CO <sub>2</sub> Et     -TMS     1     26     21       8     -CO <sub>2</sub> Et     -Me     1     20     22 | ield³ [%] | ct | product | t[h] | CO [atm] | R <sub>2</sub> | R <sub>1</sub>      | entry |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|---------|------|----------|----------------|---------------------|-------|
| 3 -COCH <sub>3</sub> -Ph 1 26 17<br>4 -CONH <sub>2</sub> -Ph 1 40 18<br>5 -CHO -Ph 2 26 19<br>6 -CO <sub>2</sub> Et -Ph 1 24 20<br>7 -CO <sub>2</sub> Et -TMS 1 26 21<br>8 -CO <sub>2</sub> Et -Me 1 20 22                                                                                                                                                                                                                                               | 97        |    | 15      | 20   | 2        | -Et            | -COCH <sub>3</sub>  | 1     |
| 4 -CONH <sub>2</sub> -Ph 1 40 18<br>5 -CHO -Ph 2 26 19<br>6 -CO <sub>2</sub> Et -Ph 1 24 20<br>7 -CO <sub>2</sub> Et -TMS 1 26 21<br>8 -CO <sub>2</sub> Et -Me 1 20 22                                                                                                                                                                                                                                                                                   | 54        |    | 16      | 42   | 1        | -TMS           | -COCH <sub>3</sub>  | 2     |
| 5 -CHO -Ph 2 26 19<br>6 -CO <sub>2</sub> Et -Ph 1 24 20<br>7 -CO <sub>2</sub> Et -TMS 1 26 21<br>8 -CO <sub>2</sub> Et -Me 1 20 22                                                                                                                                                                                                                                                                                                                       | 88        |    | 17      | 26   | 1        | −Ph            | $-COCH_3$           | 3     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                    | 96        |    | 18      | 40   | 1        | −Ph            | $-CONH_2$           | 4     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                    | $69^{b}$  |    | 19      | 26   | 2        | -Ph            | -CHO                | 5     |
| $8 - CO_2Et - Me$ 1 20 22                                                                                                                                                                                                                                                                                                                                                                                                                                | 79        |    | 20      | 24   | 1        | -Ph            | $-CO_2Et$           | 6     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $67^c$    |    | 21      | 26   | 1        | -TMS           | -CO <sub>2</sub> Et | 7     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $85^d$    |    | 22      | 20   | 1        | -Me            | -CO <sub>2</sub> Et | 8     |
| 9 $-CO_2Me$ $-CO_2Me$ 1 30 11                                                                                                                                                                                                                                                                                                                                                                                                                            | $48^e$    |    | 11      | 30   | 1        | $-CO_2Me$      | $-CO_2Me$           | 9     |

- Good yields of diquinanes with carbonyl activated alkynes
- Highly regio- and diastereoselective

J. Am. Chem. Soc. 2002, 124, 2876-2877.

## Background: Rh(I)-Catalyzed Two Component [5+2+1] Cycloadditon of Ene-vinylcyclopropanes and CO

## Computational considerations for the [Rh(CO)<sub>2</sub>Cl]<sub>2</sub> catalyzed cycloaddition reaction

$$[Rh(CO)_{2}Cl_{2}]$$

$$= RhLn$$

$$= RE$$

$$= E_{A}: 25-30 \text{ kcal/mol}$$

$$= RE$$

$$= E_{A}: 25-30 \text{ kcal/mol}$$

$$= RE$$

$$= E_{A}: 23-24 \text{ kcal/mol}$$

$$= E_{A}: 13-14 \text{ kcal/mol}$$

$$= RE$$

$$= E_{A}: 23-24 \text{ kcal/mol}$$

$$= E_{A}: 13-14 \text{ kcal/mol}$$

$$= E_{A}: 13-14 \text{ kcal/mol}$$

Effect of VCP olefin geometry on the cis/trans stereochemistry of the bicyclic products



#### Substrate Scope



J. Am. Chem. Soc. 2007, 129, 10060-10061.

## Combination of Methodologies: Construction of the Linear Triquinane Skeleton

#### Key Transformation

#### Initial Attempts



#### Optimization: Changes at the O-substitutent

#### • Ethoxy- and siloxy-ene-VCP



#### Model Reaction Study on the Tandem Two-Component [(5+2)+1]/Aldol Reactions



nOe experiment for 15d



- Different tether groups on the siloxy-ene-VCPs have a minor effect on the reaction
- Methyl substituted (*Z*)-siloxy-ene-VCPs produce the correct cis-anti-cis configuration of the linear triquinane core diastereoselectively
- Methyl substituted (*E*)-siloxy-ene-VCPs produce the trans fused 5-8 bicyclic compounds and do not undergo the tandem aldol reaction

## Rational for the Stereochemistry of the [(5+2)+1] Cycloaddition

a. Stereochemical process for [(5+2)+1] cycloaddition: TS1-trans

• Mechanism: VCP cleavage, alkene insertion, CO insertion, reductive elimination

TS2-trans

trans cycloadduct

### Rational for the Stereochemistry of the Aldol Condensation

• The stereochemical outcome of the tandem two-component [(5+2)+1]/aldol reaction diastereoselectively sets the tricyclic core of hirsutene and 1-desoxyhypnophilin

## Retrosynthetic Analysis for the Natural Products: hirsutene and 1-desoxyhypnophilin

Both natural products can be synthesized by elaboration of the common linear triquinane intermediate resulting from the tandem Rh(I)-catalyzed [(5+2)+1]/aldol reaction methodology.

## Synthesis of Key linear triquinane intermediate and (<u>+</u>)-Hirsutene

Concise 8 step synthesis of  $(\pm)$ -hirsutene with an overall yield of 11%

#### Synthesis of (±)-1-Desoxyhypnophilin

(±)-1-desoxyphypnophinin synthesized in 9 steps with 13% overall yield

#### Conclusions

- The authors have developed an efficient tandem two-component rhodium(I) catalyzed [(5+2)+1] cycloaddition/aldol condensation reaction.
- This methodology was showcased by diastereoselectively establishing, in a single step, the correct placement of all stereocenters, including the two quarternary centers, contained in the core structure of the linear triquinanes: hirsutene and 1-desoxyhypnophilin.
- This paper represents the first application of the Rh(I)-catalyzed [(5+2)+1] methodology in natural product synthesis.